Remarquons d'abord que f f définit une bijection de ]−∞;1[ ] − ∞ ; 1 [ dans ]−∞;1[ ] − ∞ ; 1 [ par la formule f(x)=x f ( x ) = x . La bijection réciproque est donnée par f−1(y)=y f − 1 ( y ) = y .
Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
Une application est bijective si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est à la fois injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques.
La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y . Elle se note f−1 .
Théorème de la bijection (TB) :
Si f est continue et strictement monotone, f(I) est un intervalle et )I(f I:f → est une fonction bijective. α= )x(f0 . Traduction : α= ∈ ∃ )x(f/I x!
On dit qu'une fonction f est bijective si elle est injective et surjective. Exemples : f:R→R:x↦3x est bijective. f:Z→Z:z↦3z n'est pas bijective car elle n'est pas surjective.
Une application linéaire f ∈ L (E,F) est bijective si et seulement si M(f)ei,fj est inversible. De plus, M(f−1)fj ,ei = (M(f)ei,fj )−1 .
Si x, non nul, est un zéro de P, alors 1/x est un zéro de Q, et réciproquement. On dit qu'un polynôme P est réciproque lorsque P = Q.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
RÉCIPROCITÉ, subst. fém. A. − Caractère de ce qui est réciproque, état d'un sentiment, d'une relation, d'une action réciproque.
Pour montrer qu'un endomorphisme f ∈ L(E) est bijective, il suffit de montrer que f est injectif (en montrant par exemple que Ker(f) = {0E}) ou que f est surjectif (en montrant Im(f) = F).
f est surjective si et seulement si pour tout élément y de F, l'équation f (x) = y a au moins une solution dans E. ∀x, y ∈ I x < y =⇒ f (y) < f (x). Soient I un intervalle de R et f : I → R une fonction strictement croissante (ou strictement décroissante).
Une fonction f : E → F est une application si Dom(f ) = E.
Remarques - Soit f : E −→ F une application. Pour montrer que f n'est pas injective, il suffit de trouver deux éléments distincts x et x de E tels que f(x) = f(x ). Pour montrer que f n'est pas surjective, il suffit de trouver un élément y de F qui n'a aucun antécédent.
Quel que soit a, la droite d'équation y = a y=a y=a a un seul point d'intersection avec la courbe représentative de la fonction cube. On en déduit que tout réel a un seul antécédent par la fonction cube et que cette fonction admet une réciproque. C'est ce qu'on appelle parfois le "test de la droite horizontale".
En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Propriété 1 : Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
Fonction pour laquelle les variables dépendante et indépendante qui définissent la relation entre le domaine et l'image peuvent être échangées de manière à ce que la nouvelle relation obtenue soit aussi une fonction. En d'autres termes, une fonction est inversible lorsque sa réciproque est aussi une fonction.
Si on a égalité de fractions, alors les droites sont parallèles. Contraposée : Si les fractions ne sont pas égales, alors les droites ne sont pas parallèles.
Lorsqu'il existe, ce point de rencontre est un couple (x,y) . Cela est possible lorsque les deux droites sont sécantes. Si les droites sont parallèles entre elles, on aura plutôt une infinité de solution si elles sont confondues, ou l'absence de solution si elles sont disjointes.
Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K. Propriétés. Si f:E → F est une application linéaire alors • f(0) = 0, • f(λ1u1 + ··· + λnun) = λ1f(u1) + ··· + λnf(un).
Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
De plus d'apr`es la formule du rang dim kerf + rg f = n, mais dim kerf = dim Imf = rg f, ainsi 2 rg f = n. (ii) ⇒ (i) Si f2 = 0 alors Imf ⊂ kerf car pour y ∈ Imf il existe x tel que y = f(x) et f(y) = f2(x) = 0. De plus si 2rg f = n alors par la formule Du rang dimkerf = rg f c'est-`a-dire dim kerf = dim Imf.