Par exemple, 60 est un multiple de 15, car 60 = 15 × 4 et 4 est un nombre entier. Si n est un multiple de d (avec d non nul), alors d est un diviseur de n. La liste des plus petits multiples d'un nombre entier est donné dans la table de multiplication de ce nombre.
Par exemple, pour calculer les multiples de 15, il suffit de multiplier 15 par 1, 2, 3, 4, 5, etc. Les premiers multiples de 15 sont donc 15, 30, 45, 60, 75, 90, etc.
Le multiple de 60 est n'importe quel nombre qui peut être divisé par 60 sans laisser de reste. Par conséquent, les multiples de 60 sont 60, 120, 180, 240, 300, 360, et ainsi de suite, en ajoutant 60 à chaque fois.
Reconnaître les multiples des nombres d'usage courant : Pour savoir si un nombre est multiple de 2, ou de 5, ou de 15, etc. il suffit de faire la division de ce nombre par 2, ou par 5, ou par 15, etc. Si le quotient est exact et le reste nul, alors il est bien un multiple.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,… sont tous des multiples de trois. 7, 14, 21, 28, 35, 42, 49, etc.
Les premiers multiples positifs de 15 sont 0 ; 15 ; 30 ; 45 ; 60 ; 75 ; etc. 12 et 15 ont des multiples positifs communs : 60 ; 120 ; etc. Le plus petit est 60.
13,3333332*15=199,99999998 est le plus grand multiple. Si le multiple doit être entier, 195.
L'ensemble des multiples d'un nombre est le résultat de la multiplication de ce nombre par chacun des nombres entiers (Z ). 12 est un multiple de 3 , car 3×4=12 3 × 4 = 12 . L'ensemble des multiples de 3 est obtenu en multipliant 3 par chacun des éléments de Z .
60 est multiple de 3. 60 est multiple de 4. 60 est multiple de 5.
Un nombre entier est divisible par 4 si le nombre formé par ses deux derniers chiffres est un multiple de 4.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Pour savoir si un nombre est un multiple de 3, il faut additionner tous les chiffres qui composent le nombre. Si le total est égal à 3, 6 ou 9, alors le nombre est un multiple de 3. Par exemple, dans le nombre 15, on additionne les chiffres 1 et 5 : 1+5=6. Le total est égal à 6, il s'agit donc d'un multiple de 3.
Le plus petit multiple commun de 15,25 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 3⋅5⋅5 3 ⋅ 5 ⋅ 5 .
Exemples de multiples de 6
Certains des exemples populaires incluent 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, etc.
L'ensemble des multiples positifs de 6 est : mult(6) = {6, 12, 18, 24, 30, 36, 42, …} . L'ensemble des multiples de 6 est : mult(6) = {…, –30, –24, –18, –12, –6, 0, 6, 12, 18, 24, 30, …}.
1) Les multiples successifs de 14 sont : 14, 28, 42, 56, … 140, 154, … 280, … On reconnaît que 56 est un multiple de 14.
Les multiples de 50 et de 25
Un nombre est multiple de 50 s'il se termine par 00 ou 50. Exemple : 50 ; 100 ; 150 ; 200 ; 250 ; etc. Un nombre est multiple de 25 s'il se termine par 00, 25, 50 ou 75. Exemple : 25 ; 50 ; 75 ; 100 ; 125 ; 150 ; 175 ; 200 ; etc.
Le plus petit multiple commun de 15,20 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 2⋅2⋅3⋅5 2 ⋅ 2 ⋅ 3 ⋅ 5 . Multipliez 2 2 par 2 2 . Multipliez 4 4 par 3 3 .
Si mult(12) = {0, 12, 24, 36, 48, 60, 72, 84, …} et mult(15) = {0, 15, 30, 45, 60, 75, 90, …}, alors : PPCM(12, 15) = 60.
b) Les premiers multiples de 12 : 0, 12, 24, 36, 48, 60, 72 et ceux de 15 sont : 0, 15, 30, 45, 60, 75 Le plus petit multiple commun à 12 et à 15 différent de 0 est 60.
0 : en effet, 0 est divisible par n'importe quel nombre entier, il est donc aussi un multiple de 15 puisque 0 × 15 = 0.
Voici la liste des 15 nombres premiers inférieurs à 50 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47. Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}.
42 est divisible par 6 ; 42 est un multiple de 6 ; 6 est un diviseur de 42.