Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante, alors ils sont égaux. Si un triangle est isocèle, alors ses angles à la base sont égaux.
Si deux droites parallèles sont coupées par une sécante, alors elles forment des angles alternes-internes de même mesure. Réciproquement, si deux droites coupées par une sécante forment des angles alternes-internes de même mesure, alors ces deux droites sont parallèles.
Si deux droites parallèles sont coupées par une sécante, alors les angles correspondants qu'elles forment ont même mesure. Propriété : Si deux droites coupées par une sécantes forment deux angles alternes- internes égaux, alors ces deux droites sont parallèles.
Propriété:Si deux angles sont symétriques par rapport à une droite,alors ils ont la même mesure. Propriété:Si deux angles sont symétriques par rapport à un point, alors ils ont la même mesure.
Un triangle isocèle. Dans un triangle isocèle, les angles adjacents à la base sont égaux.
On dit de deux angles qu'ils sont alternes-internes lorsque ces deux angles sont formés par deux droites dont une autre droite est sécante aux deux autres. Se plus, les deux angles doivent être situés de part et d'autre de la droite sécantes des deux premières droites.
Deux droites parallèles coupées par une sécante déterminent des angles alternes internes de même mesure et des angles correspondants de même mesure.
Les angles correspondants n'ont pas le même sommet mais sont situés du même côté d'une droite sécante, l'un à l'intérieur et l'autre à l'extérieur de deux droites coupées par cette sécante. Des angles correspondants sont isométriques si et seulement si les deux droites coupées par la sécante sont parallèles.
Deux angles sont dits adjacents si : ils ont le même sommet, ils ont un côté commun, ils sont de part et d'autre de ce côté commun.
Si deux droites parallèles sont coupées par une sécante, alors ces droites forment des angles alternes-externes de même mesure. Réciproquement, si deux droites coupées par une sécante forment des angles alternes-externes de même mesure, alors ces deux droites sont parallèles.
Si on veut trouver la mesure d'un seul angle intérieur d'un polygone régulier, il suffit de diviser la somme des mesures des angles intérieurs par le nombre d'angles qu'il contient.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
L'angle droit : il est formé par deux segments ou deux droites perpendiculaires. On peut le tracer ou le vérifier en utilisant une équerre. L'angle aigu : il est plus « petit » ou plus « fermé » qu'un angle droit. L'angle obtus : il est plus « grand » ou plus « ouvert » qu'un angle droit.
Un triangle obtusangle. En géométrie euclidienne, la somme des mesures des angles intérieurs d'un triangle étant toujours égale à 180°, un triangle ne peut avoir plus d'un angle obtus.
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
Anciennement, en géométrie euclidienne, un triangle isocèle possédait exactement deux côtés égaux. Un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles ont alors la même mesure qui vaut donc 60° et il admet trois axes de symétrie.
L'angle nul, qui mesure 0°. L'angle plat, qui mesure 180°. L'angle plein, qui mesure 360°. L'angle saillant, qui mesure entre 0° et 180°.
Un angle se mesure avec un rapporteur. Le rapporteur mesure l'amplitude de l'angle en degré (0 à 360°). L'amplitude de l'angle est formé par l'écartement des 2 côtés de l'angle. Le radians (0 à ) est une autre unité de mesure d'un angle qui est plus utilisée à l'université.
rentrant si sa mesure est comprise entre 180° et 360°. plein si sa mesure vaut 360°. aigu si sa mesure vaut entre 0° et 90°. obtus si sa mesure vaut entre 90° et 180°.
Il existe plusieurs types d'angles : l'angle aigu, l'angle obtus, l'angle rentrant ou l'angle saillant. Certains angles particuliers : l'angle droit, l'angle plat et l'angle nul.
On dit que deux angles sont opposés par le sommet lorsqu'ils ont le même sommet et que leurs côtés sont dans le prolongement les uns des autres.
Avant de plonger dans la définition approfondie, un triangle scalène est un triangle qui n'a pas de côtés égaux. Aucun de ses trois côtés n'est égal à l'autre et il n'a pas non plus d'angles égaux. Dans cet article, nous discutons de la définition, des propriétés et des formules d'un triangle scalène.