Lorsqu'un test d'hypothèse est effectué, il est souvent supposé que les données constituent un échantillon provenant d'une certaine distribution (en général, la loi normale). Le terme non paramétrique implique qu'aucune supposition n'est faite quant à la distribution de la population.
Les tests non-paramétriques ne se basent pas sur des distributions statistiques. Ils peuvent donc être utilisés même si les conditions de validité des tests paramétriques ne sont pas vérifiées. Les tests paramétriques ont souvent des tests non-paramétriques équivalents.
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Un test non paramétrique est un test d'hypothèse qui n'exige pas que la distribution de la population soit caractérisée par certains paramètres. Par exemple, de nombreux tests d'hypothèse supposent que la population obéit à une loi normale pour les paramètres µ et σ.
Les tests paramétriques
s'utilisent lorsque les données sont 'distribuées', donc elles suivent la forme d'une courbe. Par exemple, lorsque la distribution des données est normale.
Grands échantillons et méthodes non-paramétriques. Les méthodes non-paramétriques sont plus appropriées lorsque les échantillons sont de petite taille. Lorsque l'échantillon est assez grand (par exemple, n > 100) les tests non-paramétriques sont souvent inadaptés.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
On appelle risque alpha le risque de conclure à l'existence d'une différence qui n'existe pas en réalité: en thérapeutique, cela revient à considérer efficace un traitement qui ne l'est pas.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
La régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Les statistiques paramétriques font partie de l'inférence statistique qui utilise des statistiques et des critères de résolution basés sur des distributions connues. Les statistiques paramétriques, dans le cadre de l'inférence statistique, tentent d'estimer certains paramètres d'une population de données.
La procédure Test U de Mann-Whitney utilise le rang de chaque observation pour tester si les groupes sont issus de la même population. Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
En statistiques, le test de Kolmogorov-Smirnov est un test d'hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez rejeter l'hypothèse nulle.
Les tests de conformité sont destinés à vérifier si un échantillon peut être considéré comme extrait d'une population donnée ou représentatif de cette population, vis-à-vis d'un paramètre comme la moyenne, la variance ou la fréquence observée.
Ce coefficient se calcule comme le ratio de la covariance entre la rentabilité d'un portefeuille (Rp) et celle du marché (Rm), par la variance de la rentabilité implicite du marché (Rm). Sa formule est donc : beta = (Cov(Rp, Rm))/Var(Rm).
C'est le risque de ne pas mettre en évidence une différence qui existe, donc de ne pas montrer à tort que le traitement étudié est plus efficace alors qu'il l'est.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
2. Le test de Mann-Whitney. le test de Mann-Whitney est l'alternative non paramétrique de t de Student pour deux échantillons indépendants. Lorsque la distribution des valeurs ne suit pas une loi normale, donc dissymétrique, le test t de student ne s'applique pas; il faut utiliser plutôt le test de Mann-Whitney.
Introduction au test t de Student
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Seuls tests applicable pour un échantillon de taille inférieure `a 6.
Il se calcule comme suit : W = X2/N(K-1) ; où W est la valeur W de Kendall ; X2 est la valeur statistique du test de Friedman ; N est la taille de l'échantillon. k est le nombre de mesures par sujet (M. T. Tomczak and Tomczak 2014).