On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
Si le quotient est supérieur ou égal à 1 pour tout n, la suite est croissante. Si le quotient est inférieur ou égal à 1 pour tout n, la suite est décroissante. Si la position du quotient par rapport à 1 varie en fonction de la valeur de n, la suite n'est pas monotone.
a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.
D'après le cours, une suite monotone est une suite qui est soit croissante, soit décroissante . De même, une suite strictement monotone est une suite qui est soit strictement croissante, soit strictement décroissante .
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
La remarque de Fred te permet alors de savoir si elle est croissante ou non pour n assez grand. La suite est monotone à partir d un certain rang p lorsque le quotient up+1up u p + 1 u p dépasse une certaine valeur.
Soient a et b deux points de I et k un nombre compris entre ƒ(a) et ƒ(b). De plus, on suppose que ƒ est strictement monotone sur I. Alors il existe un unique point c compris entre a et b tel que ƒ(c) = k. Autrement dit, l'équation ƒ(x) = k admet une unique solution comprise entre a et b.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).
La fonction (g∘f) ( g ∘ f ) est appelée la composée de g par f . On lit cette composée g rond f . On peut également avoir (f∘g)(x)=f(g(x)) ( f ∘ g ) ( x ) = f ( g ( x ) ) qui est la composée de f par g .
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Dans ce cas la relation liant l'angle d'incidence i et l'angle de réfraction r est : n1 x sin i = n2 x sin r (loi de Snell-Descartes). Il est noté n et défini comme le rapport de la vitesse de propagation de la lumière dans le vide et la vitesse de propagation de la lumière dans le milieu considéré.
On dit que est intégrable sur si toute somme de Riemann S n ( f ) converge quand tend vers l'infini (c'est-à-dire quand les longueurs des intervalles tendent vers 0).
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle. Proposition : Soit f:[−a,a]→C f : [ − a , a ] → C une fonction continue par morceaux.
En conclure le signe de l'intégrale
En utilisant la positivité de l'intégration, on peut en déduire : Si la fonction est positive, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.