Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Nous choisissons le test F de Fisher. Une fois ces paramètres choisis, passez à l'onglet Options. Nous souhaitons tester l'égalité des variances donc l'hypothèse alternative adéquate est : Variance 1 / Variance 2 ≠ R où R est égal à 1. Le niveau de significativité par défaut est de 5%, gardez-le.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
Utilité théorique Le test de Fisher permet d'élaborer des statistiques par comparaisons, telles que des rendements agricoles, des répartitions salariales et bien d'autres. Ce test sert à comparer les moyennes de divers bords.
Si la répartition de l'échantillon ou de la distribution est symétrique autour de la moyenne alors le coefficient est nul. Si la valeur est positive, l'étalement est à droite (asymétrique gauche), en revanche si elle est négative alors l'étalement est à gauche (asymétrie droite).
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
La valeur inférieure est égale à l'inverse de la valeur de la table. Dans la pratique, si l'on prend la précaution de placer la plus forte des 2 variances au numérateur, il suffit de tester la borne supérieure puisque la valeur obtenue est toujours supérieure à 1. = risque unilatéral choisi pour le test.
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Le test U de Mann-Whitney peut être utilisé pour tester si deux groupes indépendants ont été tirés de la même population. Ce test est surtout utilisé pour étudier si une variable indépendante nominale dichotomique influence une variable dépendante ordinale de scores.
Ces tests hypothétiques liés aux différences sont classés en tests paramétriques et non paramétriques. Le test paramétrique en est un qui contient des informations sur le paramètre population. D'autre part, le test non paramétrique est un test pour lequel le chercheur n'a aucune idée du paramètre population.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Le coefficient de Fisher (statisticien britannique, 1890-1962) est la racine carrée du coefficient β1 de Pearson. Comme µ2 = Var(x) = σ2, on a la formule suivante : γ1 = µ3 σ3 7 Page 8 C'est aussi une grandeur sans dimension.
La régression linéaire va vous permettre d'en analyser la nature. Par exemple, si le prix d'un produit particulier change en permanence, vous pouvez utiliser l'analyse de régression pour déterminer si la consommation baisse à mesure que le prix augmente.
Interprétation du coefficient de corrélation de Pearson
Pour être interprété, le coefficient de corrélation doit être significatif (la valeur de p doit être plus petite que 0,05). Si le coefficient est non significatif, on considère qu'il est semblable à r = 0.
Pour tester la significativité du modèle, nous avons 2 niveaux : Un test global, obtenu grâce à une statistique de Fisher. En pratique, l'hypothèse Ho de ce test est souvent rejetée, le modèle est donc souvent significatif globalement. Un test de significativité sur chacune des variables explicatives prises une à une.
Le test des rangs signés de Wilcoxon sur échantillons appariés est une alternative non paramétrique au test t sur échantillons appariés pour comparer les données appariés. Il est utilisé lorsque les données ne sont pas distribuées normalement.
La corrélation de Spearman est l'équivalent non-paramétrique de la corrélation de Pearson. Elle mesure le lien entre deux variables. Si les variables sont ordinales, discrètes ou qu'elles ne suivent pas une loi normale, on utilise la corrélation de Spearman.
Le plus célèbre test de corrélation, ou coefficient de corrélation linéaire de Pearson, consiste à calculer le quotient de la covariance des deux variables aléatoires par le produit de leurs écarts-types. Il s'agit donc d'un test de variables quantitatives.
Le test de corrélation est utilisé pour évaluer une association (dépendance) entre deux variables. Le calcul du coefficient de corrélation peut être effectué en utilisant différentes méthodes. Il existe la corrélation r de pearson, la corrélation tau de Kendall et le coefficient de corrélation rho de Spearman.
L'énorme avantage de ce test est sa simplicité, même si de ce fait son utilisation est limitée. Comme tous les tests statistiques, il consiste, à partir de ce qui est observé, à mettre en évidence un évènement dont on connait la loi de probabilité (au moins sa forme asymptotique).